Working Group I17 Report
Transmission Relay System Performance Comparison

M. Carpenter, Chair
Birt, K.
Carroll, P.
Duboise, A.J.
Ferraro, J.
Fredrickson, D.
Ibrahim, M.A.
Krizauskas, E.
Lowe, W.G.

D. Wardlow, Vice Chair
Napikoski, T.
Nissen, T.
Miller, D.
Moskos, G.P.
Seegers, T.
Sevcik, D.R.,
Smith, L.E.
Young, R.

Introduction

In 1999, Working Group I3 published the “Transmission Protective Relay System Performance Measuring Methodology” to provide a common method to measure system relaying performance. See Appendix 1. This report compares the performance of nine different companies in the United States. Four companies reported all 4 years, one company reported 2000, 2001 & 2002 only, one company reported 2001 & 2002 only, one company reported 2001, 2002 & 2003 only, one company reported 2000 only, and one company reported 2003 only.

System Relay Performance

Year 2000

Table 1 shows the percent of incorrect operations that were the result of relaying portion of the system (i.e. excludes circuit breaker misoperations) for companies A-G by various voltage ranges. Across the top of the table are total numbers of events, K Factor, and Relay misoperations as defined in the Measuring Methodology (See Appendix 1). The remaining column headings are the same as those shown in Table 1 of the Measuring Methodology. Under each voltage class, there is a wide range in the percent of misoperations among the companies.

Table 2 shows the percent of incorrect operations for both the relay system and circuit breakers for the various companies at the various voltage classes. The percentages noted “RELAY” are the same as the total for the voltage class from Table 1. The additional information shows the % incorrect operation for the circuit breakers (noted: CB).
Charts 1 through Chart 5 are graphical representations of the data from the two tables. The number below the company letter designation is the total number of events for that particular company.

Year 2001

Tables 3 and 4, and Charts 6 through 12 are in the same format as the 2000 tables and charts except that they contain 2001 data.

Year 2002

Tables 5 and 6, and Charts 13 through 19 are in the same format as the 2000 tables and charts except that they contain 2002 data.

Year 2003

Tables 7 and 8, and Charts 20 through 26 are in the same format as the 2000 tables and charts except that they contain 2003 data.

Differences between Companies

While there is wide range in performance of the protective relaying systems, there are differences in fault clearing time requirements, system design, and system maintenance practices that must be considered. Chart 27 shows the longest acceptable clearing times for the different companies for the various voltage classes. Obviously, the relaying performance should be better for those companies with the longer acceptable clearing times.

For the different voltage classes, Charts 28 through Chart 30 reflect the different types of communication assisted relaying schemes used, Charts 31 through Chart 33 reflects the different communication mediums used, and Chart 34 through Chart 37 reflect the different types of relays (i.e. Electromechanical, microprocessor, or electronic).

For the different types of relays, Chart 38 through Chart 40 reflects the relay calibration test interval, and Chart 41 through 43 reflects the functional relay test interval.

Trends in Relay Performance

For the 4 companies who reported all 4 years, Charts 44 through 53 reflect these companies’ trends during the 4 year period.
<table>
<thead>
<tr>
<th>Company</th>
<th>Total Events</th>
<th>K Factor</th>
<th>Relay Misoperations</th>
<th>Voltage</th>
<th>Failure to Trip</th>
<th>Failure to Interrupt</th>
<th>Slow Trip</th>
<th>Unnecessary Trip During Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
<th>Total Misoperations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19</td>
<td>0</td>
<td>3</td>
<td>Above 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.8%</td>
<td>15.8%</td>
</tr>
<tr>
<td>B</td>
<td>127</td>
<td>2</td>
<td>10</td>
<td>301 - 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.6%</td>
<td>3.9%</td>
<td>0.0%</td>
<td>2.3%</td>
<td>7.8%</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>1</td>
<td>12</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.4%</td>
<td>19.2%</td>
<td>11.5%</td>
<td>46.2%</td>
</tr>
<tr>
<td>D</td>
<td>17</td>
<td>0</td>
<td>2</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.8%</td>
<td>0.0%</td>
<td>11.8%</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>G</td>
<td>54</td>
<td>1</td>
<td>21</td>
<td></td>
<td>1.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>16.7%</td>
<td>11.1%</td>
<td>9.3%</td>
<td>38.9%</td>
</tr>
<tr>
<td>A</td>
<td>96</td>
<td>0</td>
<td>31</td>
<td></td>
<td>1.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>14.6%</td>
<td>10.4%</td>
<td>6.3%</td>
<td>32.3%</td>
</tr>
<tr>
<td>B</td>
<td>336</td>
<td>7</td>
<td>52</td>
<td>201 - 300</td>
<td>0.3%</td>
<td>0.0%</td>
<td>3.2%</td>
<td>7.9%</td>
<td>0.9%</td>
<td>2.9%</td>
<td>15.2%</td>
</tr>
<tr>
<td>C</td>
<td>97</td>
<td>4</td>
<td>30</td>
<td></td>
<td>0.9%</td>
<td>0.0%</td>
<td>0.9%</td>
<td>14.8%</td>
<td>7.9%</td>
<td>4.9%</td>
<td>29.7%</td>
</tr>
<tr>
<td>D</td>
<td>174</td>
<td>0</td>
<td>5</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.1%</td>
<td>1.7%</td>
<td>0.0%</td>
<td>2.9%</td>
</tr>
<tr>
<td>E</td>
<td>19.5</td>
<td>8</td>
<td>15</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>50.9%</td>
<td>3.6%</td>
<td>0.0%</td>
<td>54.5%</td>
</tr>
<tr>
<td>G</td>
<td>115</td>
<td>1</td>
<td>22</td>
<td></td>
<td>6.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.7%</td>
<td>4.4%</td>
<td>7.0%</td>
<td>19.1%</td>
</tr>
<tr>
<td>A</td>
<td>167</td>
<td>0</td>
<td>22</td>
<td>51 - 100</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.6%</td>
<td>3.0%</td>
<td>0.6%</td>
<td>13.2%</td>
</tr>
<tr>
<td>B</td>
<td>824</td>
<td>0</td>
<td>16</td>
<td></td>
<td>0.2%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.8%</td>
<td>1.9%</td>
</tr>
<tr>
<td>C</td>
<td>426</td>
<td>1</td>
<td>23</td>
<td></td>
<td>0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.6%</td>
<td>0.2%</td>
<td>2.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>435</td>
<td>0</td>
<td>54</td>
<td>0 - 50</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.4%</td>
<td>7.6%</td>
<td>1.4%</td>
<td>12.4%</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>702</td>
<td>0</td>
<td>7</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>0.6%</td>
<td>0.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>577</td>
<td>0</td>
<td>34</td>
<td></td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.5%</td>
<td>0.9%</td>
<td>3.8%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>RELAY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOVE 400</td>
<td>RELAY</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 - 400</td>
<td>RELAY</td>
<td>15.8%</td>
<td>7.8%</td>
<td>46.2%</td>
<td>11.8%</td>
<td></td>
<td></td>
<td>38.9%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>0.0%</td>
<td>5.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>16.7%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>15.8%</td>
<td>13.2%</td>
<td>46.2%</td>
<td>11.8%</td>
<td></td>
<td></td>
<td>55.6%</td>
</tr>
<tr>
<td>201 - 300</td>
<td>RELAY</td>
<td></td>
<td>71.4%</td>
<td></td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td></td>
<td>14.3%</td>
<td></td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td></td>
<td>85.7%</td>
<td></td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - 200</td>
<td>RELAY</td>
<td>32.3%</td>
<td>15.2%</td>
<td>29.7%</td>
<td>2.9%</td>
<td></td>
<td></td>
<td>54.5%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>2.1%</td>
<td>3.2%</td>
<td>8.2%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>5.1%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>34.4%</td>
<td>18.2%</td>
<td>37.6%</td>
<td>2.9%</td>
<td></td>
<td></td>
<td>58.2%</td>
</tr>
<tr>
<td>51 - 100</td>
<td>RELAY</td>
<td>13.2%</td>
<td>1.9%</td>
<td>5.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>1.8%</td>
<td>1.3%</td>
<td>0.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>15.0%</td>
<td>3.3%</td>
<td>6.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 50</td>
<td>RELAY</td>
<td>12.4%</td>
<td></td>
<td></td>
<td>1.0%</td>
<td></td>
<td></td>
<td>5.9%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>1.1%</td>
<td></td>
<td></td>
<td>0.0%</td>
<td></td>
<td></td>
<td>4.2%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>13.6%</td>
<td></td>
<td></td>
<td>1.0%</td>
<td></td>
<td></td>
<td>10.0%</td>
</tr>
</tbody>
</table>

TABLE 2
Table 3: % Incorrect Operations (Due to Relays), Year 2001

<table>
<thead>
<tr>
<th>Company</th>
<th>Total Events</th>
<th>K Factor</th>
<th>Relay Misoperations</th>
<th>Voltage</th>
<th>Failure to Trip</th>
<th>Failure to Interrupt</th>
<th>Slow Trip</th>
<th>Unnecessary Trip Due to Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
<th>Total Misoperations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>Above 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.3%</td>
<td>8.3%</td>
<td>0.0%</td>
<td>16.7%</td>
</tr>
<tr>
<td>B</td>
<td>170</td>
<td>3</td>
<td>13</td>
<td>301 - 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.2%</td>
<td>1.7%</td>
<td>1.2%</td>
<td>3.5%</td>
<td>7.5%</td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>1</td>
<td>11</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>10.5%</td>
<td>31.6%</td>
<td>15.8%</td>
<td>57.9%</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>101 - 200</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>E</td>
<td>19</td>
<td>1</td>
<td>5</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>10.0%</td>
<td>15.0%</td>
<td>0.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>H</td>
<td>55</td>
<td>5</td>
<td>25</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>25.0%</td>
<td>15.0%</td>
<td>1.7%</td>
<td>41.7%</td>
</tr>
<tr>
<td>A</td>
<td>50</td>
<td>0</td>
<td>14</td>
<td>101 - 200</td>
<td>4.0%</td>
<td>0.0%</td>
<td>4.0%</td>
<td>10.0%</td>
<td>2.0%</td>
<td>8.0%</td>
<td>28.0%</td>
</tr>
<tr>
<td>B</td>
<td>327</td>
<td>10</td>
<td>51</td>
<td></td>
<td>0.3%</td>
<td>0.0%</td>
<td>3.0%</td>
<td>7.7%</td>
<td>2.1%</td>
<td>2.1%</td>
<td>15.1%</td>
</tr>
<tr>
<td>C</td>
<td>103</td>
<td>8</td>
<td>39</td>
<td></td>
<td>0.9%</td>
<td>0.0%</td>
<td>0.9%</td>
<td>10.8%</td>
<td>9.0%</td>
<td>13.5%</td>
<td>35.1%</td>
</tr>
<tr>
<td>D</td>
<td>101</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.0%</td>
<td>0.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>E</td>
<td>106</td>
<td>4</td>
<td>26</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>20.9%</td>
<td>2.7%</td>
<td>0.0%</td>
<td>23.6%</td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>4</td>
<td>17</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>28.1%</td>
<td>18.8%</td>
<td>6.3%</td>
<td>53.1%</td>
</tr>
<tr>
<td>H</td>
<td>144</td>
<td>13</td>
<td>40</td>
<td></td>
<td>1.3%</td>
<td>0.0%</td>
<td>1.3%</td>
<td>14.0%</td>
<td>5.1%</td>
<td>3.8%</td>
<td>25.5%</td>
</tr>
<tr>
<td>A</td>
<td>107</td>
<td>0</td>
<td>8</td>
<td>51 - 100</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>6.5%</td>
<td>0.0%</td>
<td>0.9%</td>
<td>7.5%</td>
</tr>
<tr>
<td>B</td>
<td>776</td>
<td>1</td>
<td>11</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.8%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>C</td>
<td>334</td>
<td>4</td>
<td>35</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.6%</td>
<td>0.3%</td>
<td>6.5%</td>
<td>10.4%</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>E</td>
<td>346</td>
<td>1</td>
<td>10</td>
<td></td>
<td>0.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.9%</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>5.6%</td>
<td>3.5%</td>
<td>0.4%</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Table 3
% INCORRECT OPERATIONS FOR YEAR 2001

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>RELAY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOVE 400</td>
<td>RELAY</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 - 400</td>
<td>RELAY</td>
<td>16.7%</td>
<td>7.5%</td>
<td>57.9%</td>
<td>0.0%</td>
<td>25.0%</td>
<td>100.0%</td>
<td>41.7%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>0.0%</td>
<td>2.9%</td>
<td>5.6%</td>
<td>0.0%</td>
<td>5.3%</td>
<td>0.0%</td>
<td>3.6%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>16.7%</td>
<td>10.4%</td>
<td>63.2%</td>
<td>0.0%</td>
<td>30.0%</td>
<td>100.0%</td>
<td>45.0%</td>
</tr>
<tr>
<td>201 - 200</td>
<td>RELAY</td>
<td></td>
<td></td>
<td></td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - 200</td>
<td>RELAY</td>
<td>28.0%</td>
<td>15.1%</td>
<td>35.1%</td>
<td>1.0%</td>
<td>23.6%</td>
<td>53.1%</td>
<td>25.5%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>4.0%</td>
<td>2.7%</td>
<td>3.9%</td>
<td>0.0%</td>
<td>0.9%</td>
<td>0.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>32.0%</td>
<td>17.7%</td>
<td>38.7%</td>
<td>1.0%</td>
<td>24.5%</td>
<td>53.1%</td>
<td>28.7%</td>
</tr>
<tr>
<td>51 - 100</td>
<td>RELAY</td>
<td>7.5%</td>
<td>1.4%</td>
<td>10.4%</td>
<td>0.0%</td>
<td>2.9%</td>
<td></td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>0.9%</td>
<td>1.2%</td>
<td>1.8%</td>
<td>0.0%</td>
<td>1.4%</td>
<td></td>
<td>3.0%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>8.4%</td>
<td>2.6%</td>
<td>12.1%</td>
<td>0.0%</td>
<td>4.3%</td>
<td></td>
<td>13.0%</td>
</tr>
<tr>
<td>0 - 50</td>
<td>RELAY</td>
<td>7.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6%</td>
<td></td>
</tr>
</tbody>
</table>

Table 4
<table>
<thead>
<tr>
<th>Company</th>
<th>Total Events</th>
<th>K Factor</th>
<th>Relay Misoperations</th>
<th>Voltage</th>
<th>Failure to Trip</th>
<th>Failure to Interrupt</th>
<th>Slow Trip</th>
<th>Unnecessary Trip During Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
<th>Total Misoperations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>0</td>
<td>2</td>
<td>Above 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>25.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.8%</td>
</tr>
<tr>
<td>B</td>
<td>147</td>
<td>1</td>
<td>12</td>
<td>301 - 400</td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.8%</td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>1</td>
<td>12</td>
<td>301 - 400</td>
<td>16.7%</td>
<td>0.0%</td>
<td>4.2%</td>
<td>0.0%</td>
<td>20.8%</td>
<td>8.3%</td>
<td>8.1%</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>301 - 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.1%</td>
<td>0.0%</td>
<td>11.1%</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>0</td>
<td>2</td>
<td>301 - 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>14.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.1%</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>42</td>
<td>1</td>
<td>12</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.6%</td>
<td>14.0%</td>
<td>2.3%</td>
<td>27.9%</td>
</tr>
<tr>
<td>A</td>
<td>68</td>
<td>0</td>
<td>16</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>16.7%</td>
<td>16.7%</td>
<td>33.3%</td>
<td>66.7%</td>
</tr>
<tr>
<td>B</td>
<td>342</td>
<td>10</td>
<td>50</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>C</td>
<td>136</td>
<td>8</td>
<td>46</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>4.0%</td>
<td>6.0%</td>
<td>12.5%</td>
<td>4.9%</td>
<td>31.9%</td>
</tr>
<tr>
<td>D</td>
<td>146</td>
<td>0</td>
<td>3</td>
<td>201 - 300</td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.1%</td>
</tr>
<tr>
<td>E</td>
<td>138</td>
<td>3</td>
<td>22</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>12.1%</td>
<td>2.1%</td>
<td>1.4%</td>
<td>15.6%</td>
</tr>
<tr>
<td>F</td>
<td>17</td>
<td>0</td>
<td>7</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>17.6%</td>
<td>17.6%</td>
<td>31.9%</td>
<td>41.2%</td>
</tr>
<tr>
<td>H</td>
<td>159</td>
<td>24</td>
<td>68</td>
<td>201 - 300</td>
<td>2.2%</td>
<td>0.0%</td>
<td>2.7%</td>
<td>10.9%</td>
<td>18.0%</td>
<td>3.3%</td>
<td>37.2%</td>
</tr>
<tr>
<td>A</td>
<td>97</td>
<td>0</td>
<td>8</td>
<td>101 - 200</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>16.2%</td>
<td>2.9%</td>
<td>4.4%</td>
<td>23.5%</td>
</tr>
<tr>
<td>B</td>
<td>810</td>
<td>3</td>
<td>21</td>
<td>101 - 200</td>
<td>0.0%</td>
<td>0.0%</td>
<td>4.0%</td>
<td>6.0%</td>
<td>1.7%</td>
<td>2.6%</td>
<td>14.2%</td>
</tr>
<tr>
<td>C</td>
<td>557</td>
<td>5</td>
<td>51</td>
<td>101 - 200</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.1%</td>
<td>12.5%</td>
<td>4.9%</td>
<td>12.5%</td>
<td>39.1%</td>
</tr>
<tr>
<td>D</td>
<td>428</td>
<td>6</td>
<td>31</td>
<td>101 - 200</td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.1%</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>267</td>
<td>3</td>
<td>21</td>
<td>101 - 200</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.7%</td>
<td>4.1%</td>
<td>1.5%</td>
<td>1.1%</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

Table 5
% INCORRECT OPERATIONS FOR YEAR 2002

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOVE 400</td>
<td>RELAY</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>25.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 - 400</td>
<td>RELAY</td>
<td>11.8%</td>
<td>8.1%</td>
<td>50.0%</td>
<td>11.1%</td>
<td>14.3%</td>
<td>27.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>5.9%</td>
<td>2.7%</td>
<td>17.4%</td>
<td>0.0%</td>
<td>6.3%</td>
<td>2.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>17.6%</td>
<td>10.8%</td>
<td>66.7%</td>
<td>11.1%</td>
<td>18.8%</td>
<td>30.2%</td>
<td></td>
</tr>
<tr>
<td>201 - 300</td>
<td>RELAY</td>
<td></td>
<td>66.7%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>66.7%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - 200</td>
<td>RELAY</td>
<td>23.5%</td>
<td>14.2%</td>
<td>31.9%</td>
<td>2.1%</td>
<td>15.6%</td>
<td>41.2%</td>
<td>37.2%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>1.5%</td>
<td>3.2%</td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.7%</td>
<td>5.9%</td>
<td>5.0%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>25.0%</td>
<td>17.3%</td>
<td>32.6%</td>
<td>2.1%</td>
<td>16.3%</td>
<td>47.1%</td>
<td>41.5%</td>
</tr>
<tr>
<td>51 - 100</td>
<td>RELAY</td>
<td>8.2%</td>
<td>2.6%</td>
<td>9.1%</td>
<td></td>
<td>7.1%</td>
<td></td>
<td>7.8%</td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>1.0%</td>
<td>1.5%</td>
<td>0.9%</td>
<td></td>
<td>0.7%</td>
<td></td>
<td>3.0%</td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td>9.3%</td>
<td>4.1%</td>
<td>10.0%</td>
<td></td>
<td>7.8%</td>
<td></td>
<td>10.7%</td>
</tr>
<tr>
<td>0 - 50</td>
<td>RELAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5%</td>
<td></td>
</tr>
</tbody>
</table>

Table 6
<table>
<thead>
<tr>
<th>Company</th>
<th>Total Events</th>
<th>K Factor</th>
<th>Relay Misoperations</th>
<th>Voltage</th>
<th>Failure to Trip</th>
<th>Failure to Interrupt</th>
<th>Slow Trip</th>
<th>Unnecessary Trip During Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
<th>Total Misoperations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23</td>
<td>0</td>
<td>4</td>
<td>Above 400</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.7%</td>
<td>8.7%</td>
<td>0.0%</td>
<td>17.4%</td>
</tr>
<tr>
<td>B</td>
<td>136</td>
<td>2</td>
<td>20</td>
<td>301 - 400</td>
<td>0.7%</td>
<td>0.0%</td>
<td>1.4%</td>
<td>5.1%</td>
<td>2.2%</td>
<td>5.1%</td>
<td>14.5%</td>
</tr>
<tr>
<td>C</td>
<td>22</td>
<td>1</td>
<td>13</td>
<td>201 - 300</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>13.0%</td>
<td>39.1%</td>
<td>4.3%</td>
<td>56.5%</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>4</td>
<td>7</td>
<td>101 - 200</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>35.0%</td>
<td>35.0%</td>
<td>35.0%</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>51 - 100</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.6%</td>
<td>0.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>33.3%</td>
<td>33.3%</td>
<td>33.3%</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Table 7
% INCORRECT OPERATIONS FOR YEAR 2003

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOVE 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY</td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>33.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td>66.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 - 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY</td>
<td>17.4%</td>
<td>14.5%</td>
<td>56.5%</td>
<td>35.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td>33.3%</td>
</tr>
<tr>
<td>CB</td>
<td>0.0%</td>
<td>5.1%</td>
<td>4.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>17.4%</td>
<td>19.6%</td>
<td>60.9%</td>
<td>35.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td>33.3%</td>
</tr>
<tr>
<td>201 - 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY</td>
<td>20.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>10.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td>30.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY</td>
<td>30.6%</td>
<td>14.7%</td>
<td>22.7%</td>
<td>19.5%</td>
<td>62.5%</td>
<td></td>
<td></td>
<td></td>
<td>68.8%</td>
</tr>
<tr>
<td>CB</td>
<td>0.0%</td>
<td>3.3%</td>
<td>2.3%</td>
<td>5.2%</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
<td>25.0%</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>30.6%</td>
<td>17.9%</td>
<td>25.0%</td>
<td>24.6%</td>
<td>62.5%</td>
<td></td>
<td></td>
<td></td>
<td>77.8%</td>
</tr>
<tr>
<td>51 - 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY</td>
<td>6.7%</td>
<td>1.7%</td>
<td>6.0%</td>
<td>10.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.8%</td>
</tr>
<tr>
<td>CB</td>
<td>1.0%</td>
<td>0.6%</td>
<td>1.0%</td>
<td>2.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>7.6%</td>
<td>2.3%</td>
<td>7.0%</td>
<td>12.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.8%</td>
</tr>
<tr>
<td>0 - 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8
Year 2000, Total % Relay System Misoperations by Voltage Class

Percent

Company/Total # of Events

A B C D E F G
717 1287 556 899 20.5 746
Year 2000, Transmission % Relay Misoperations by Type
300-400 kV

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose

Percent

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Company/Total # of Events

A 19
B 127
C 25
D 17
E
F 1
G 54

Failure to Reclose
Unnecessary Trip Other Than Fault
Unnecessary Trip During Fault
Slow Trip
Failure to Interrupt
Failure to Trip
Year 2000, Transmission % Relay Misoperations by Type
100-200 kV

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose

0%
10%
20%
30%
40%
50%
60%

Percent

Company/Total # of Events
A 96
B 336
C 97
D 174
E
F 19.5
G 115

Failure to Reclose
Unnecessary Trip Other Than Fault
Unnecessary Trip During Fault
Slow Trip
Failure to Interrupt
Failure to Trip

C3
Year 2000, Total % Incorrect Operations at 300-400 kV
Year 2000, Total % Incorrect Operations at 100-200 kV

<table>
<thead>
<tr>
<th>Company/Total # of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 96 336</td>
</tr>
<tr>
<td>B 97 174</td>
</tr>
<tr>
<td>C 19.5</td>
</tr>
<tr>
<td>D 115</td>
</tr>
<tr>
<td>E 115</td>
</tr>
<tr>
<td>F 115</td>
</tr>
<tr>
<td>G 115</td>
</tr>
<tr>
<td>CB 115</td>
</tr>
<tr>
<td>Relay 115</td>
</tr>
</tbody>
</table>

Percent
Year 2001, Total % Relay System Misoperations By Voltage Class

<table>
<thead>
<tr>
<th>Voltage Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-100 kV</td>
<td>169</td>
<td>1273</td>
<td>461</td>
<td>124</td>
<td>471</td>
<td>30</td>
<td>430</td>
</tr>
<tr>
<td>101-200 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201-300 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301-400 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-100 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Year 2001, Transmission % Relay Misoperations by Type
300-400 kV
Year 2001, Transmission % Relay Misoperations By Type
100-200 kV

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to Trip</td>
<td>0%</td>
</tr>
<tr>
<td>Failure to Interrupt</td>
<td>2%</td>
</tr>
<tr>
<td>Slow Trip</td>
<td>4%</td>
</tr>
<tr>
<td>Unnecessary Trip During Fault</td>
<td>6%</td>
</tr>
<tr>
<td>Unnecessary Trip Other Than Fault</td>
<td>8%</td>
</tr>
<tr>
<td>Failure to Reclose</td>
<td>10%</td>
</tr>
<tr>
<td>Failure to Interrupt</td>
<td>12%</td>
</tr>
</tbody>
</table>

Company/Total # of Events

Year 2001, Total % Incorrect Operations at 300-400 kV

Company/Total # of Events

- A: 12
- B: 170
- C: 18
- D: 20
- E: 19
- F: 2
- G: 55

Percent:
- 0%
- 10%
- 20%
- 30%
- 40%
- 50%
- 60%
- 70%
- 80%
- 90%
- 100%
Year 2001, Total % Incorrect Operations at 100-200 kV

Company/Total # of Events

A 327
B 103
C 101
D 106
E 28
F 144

Percent

System
CB
Relay

Relay CB System 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
2001 Total % Incorrect Operations at 50-100 kV

Percent

Company/Total # of Events

A 107 776 334 3 346 231

System CB Relay
Year 2002, Total % Relay System Misoperations By Voltage Class

- 51-100 kV: 1299 events, 722 total (46.81%)
- 101-200 kV: 159 events, 80 total (6.25%)
- 201-300 kV: 580 events, 270 total (21.48%)
- 301-400 kV: 17 events, 10 total (17.65%)

Company/Total # of Events:
- A: 182
- B: 1299
- C: 722
- D: 159
- E: 580
- F: 17
- H: 468
Year 2002, Transmission % Relay Misoperations by Type
300-400 kV

- Failure to Trip
- Failure to Interrupt
- Slow Trip
- Unnecessary Trip During Fault
- Unnecessary Trip Other Than Fault
- Failure to Reclose

Percent

Company/Total # of Events

A 147
B 23
C 9
D 14
E 42
H

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose
Year 2002, Transmission % Relay Misoperations By Type
100-200 kV

- Failure to Trip: 0%
- Failure to Interrupt: 2%
- Slow Trip: 4%
- Unnecessary Trip During Fault: 6%
- Unnecessary Trip Other Than Fault: 8%
- Failure to Reclose: 10%
- Failure to Trip: 12%

Company/Total # of Events:
- A: 68
- B: 342
- C: 136
- D: 146
- E: 138
- F: 17
- H: 159
2002 Transmission % Relay Misoperations By Type
50-100 kV

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose

Percent

Company/Total # of Events

A 97
B 810
C 557
D
E 428
F
G
H 267

Failure to Trip
Failure to Reclose
Unnecessary Trip Other Than Fault
Unnecessary Trip During Fault
Slow Trip
Failure to Interrupt
Year 2002, Total % Incorrect Operations at 300-400 kV

Company/Total # of Events

Percent

A 17 147 23 9 14 42 42

System

CB

Relay

C17
Year 2002, Total % Incorrect Operations at 100-200 kV

Company/Total # of Events

- A: 68
- B: 342
- C: 136
- D: 146
- E: 138
- F: 17
- H: 159

Percent
2002 Total % Incorrect Operations at 50-100 kV

Company/Total # of Events

A: 97
B: 810
C: 557
D: 428
E: 267

Percent: 0%, 5%, 10%, 15%, 20%, 25%
2003 Transmission % Relay Misoperations By Type
300-400 kV

Company/Total # of Events

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose
Failure to Trips
2003 Transmission % Relay Misoperations By Type
100-200 kV

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose

Percent

Company/Total # of Events

A 72
B 303
C 128
D
E 115
F 15
G
H 10
I

Failure to Reclose
Unnecessary Trip Other Than Fault
Unnecessary Trip During Fault
Slow Trip
Failure to Interrupt
Failure to Trip

Percent

0%
5%
10%
15%
20%
25%
30%
35%
40%
2003 Transmission % Relay Misoperations By Type
50-100 kV

Failure to Trip
Failure to Interrupt
Slow Trip
Unnecessary Trip During Fault
Unnecessary Trip Other Than Fault
Failure to Reclose

Percent

A B C E I

Company/Total # of Events

105 697 397 291 47
2003 Total % Incorrect Operations at 300-400 kV

Company/Total # of Events

- A: 23
- B: 136
- C: 22
- E: 16
- F: 1
- I: 9

Percent

- 0%
- 10%
- 20%
- 30%
- 40%
- 50%
- 60%
- 70%
2003 Total % Incorrect Operations at 100-200 kV

<table>
<thead>
<tr>
<th>Company/Total # of Events</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30%</td>
</tr>
<tr>
<td>B</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>20%</td>
</tr>
<tr>
<td>E</td>
<td>50%</td>
</tr>
<tr>
<td>F</td>
<td>60%</td>
</tr>
<tr>
<td>I</td>
<td>70%</td>
</tr>
</tbody>
</table>

Company/Total # of Events:

72
303
128
115
15
10
2003 Total % Incorrect Operations at 50-100 kV

<table>
<thead>
<tr>
<th>Company/Total # of Events</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0%</td>
</tr>
<tr>
<td>B</td>
<td>697</td>
</tr>
<tr>
<td>C</td>
<td>4%</td>
</tr>
<tr>
<td>E</td>
<td>291</td>
</tr>
<tr>
<td>I</td>
<td>47</td>
</tr>
</tbody>
</table>

System
CB
Relay

C26
Longest Acceptable Clearing Time (in cycles)

Company	51-100 kV	101-200 kV	201-300 kV	301-400 kV
A | 3 | 8 | 4 | 5 |
B | 8 | 10 | 12 | 6 |
C | 5 | 20 | 6 | 6 |
D | 8 | 4 | 9 | 5 |
E | 30 | 30 | 30 | 6 |
F | 5 | 5 | 5 | 5 |
G | 6 | 6 | 20 | 6 |
H | 6 | 6 | 6 | 3 |
I | 7 | 60 | 60 | 6 |

Cycles

C27
Type Communication Assisted Scheme: 300 - 400kV

Company A

Company B

Company C

Company D

Company E

Company F

Company H

Company I

POTT DCB PUTF Phase Comparison Current Differential Other

C28
Type Communication Assisted Scheme: 200 - 300kV

Company C
- 18%

Company D
- 50%
- 50%

Company E
- 25%
- 50%
Type Communication Assisted Scheme: 100 - 200kV

- **Company A**: 30% POTT, 60% DCB, 10% PUTT
- **Company B**: 85% Phase Comparison, 15% Current Differential
- **Company C**: 31% POTT, 30% DCB, 4% PUTT
- **Company D**: 60% POTT, 30% DCB, 10% PUTT
- **Company E**: 5% Phase Comparison, 26% Current Differential
- **Company F**: 26% POTT, 22% DCB, 28% PUTT
- **Company H**: 30% Phase Comparison, 5% Current Differential, 1% Other
- **Company I**: 100% POTT

Legend:
- POTT
- DCB
- PUTT
- Phase Comparison
- Current Differential
- Other
Communication Medium: 300 - 400kV

- **Company A**: 50% Fiber Optic, 50% Power Line Carrier
- **Company B**: 1% Fiber Optic, 99% Power Line Carrier
- **Company C**: 10% Fiber Optic, 75% Power Line Carrier
- **Company D**: 50% Fiber Optic, 50% Power Line Carrier
- **Company E**: 19% Fiber Optic, 4% Power Line Carrier, 39% Leased Lines
- **Company F**: 50% Fiber Optic, 50% Power Line Carrier
- **Company H**: 2% Fiber Optic, 30% Microwaves, 68% Leased Lines
- **Company I**: 23% Fiber Optic, 22% Microwave, 5% Other

Legend:
- Fiber Optic
- Power Line Carrier
- Leased Lines
- Microwave
- Other
Communication Medium: 200 - 300kV

Company C
- Fiber Optic: 75%
- Power Line Carrier: 15%
- Other: 10%

Company D
- Fiber Optic: 50%
- Power Line Carrier: 50%

Company E
- Fiber Optic: 25%
- Power Line Carrier: 25%
- Other: 50%
Communication Medium: 100 - 200kV

- **Company A**
 - Fiber Optic: 28%
 - Power Line Carrier: 70%
 - Other: 2%

- **Company B**
 - Fiber Optic: 15%
 - Power Line Carrier: 85%
 - Other: 10%

- **Company C**
 - Fiber Optic: 5%
 - Power Line Carrier: 85%
 - Other: 10%

- **Company D**
 - Fiber Optic: 50%
 - Power Line Carrier: 5%
 - Leased Lines: 45%

- **Company E**
 - Fiber Optic: 13%
 - Power Line Carrier: 57%
 - Leased Lines: 26%

- **Company F**
 - Fiber Optic: 2%
 - Power Line Carrier: 42%
 - Leased Lines: 30%

- **Company H**
 - Fiber Optic: 25%
 - Power Line Carrier: 60%
 - Leased Lines: 26%

- **Company I**
 - Fiber Optic: 5%
 - Power Line Carrier: 30%
 - Leased Lines: 50%

Legend:
- Fiber Optic
- Power Line Carrier
- Leased Lines
- Microwave
- Other
Type Relaying: 300 - 400kV

Company A
- 46%
- 54%
Company B
- 50%
- 47%
- 3%
Company C
- 9%
- 91%
Company D
- 20%
- 70%
Company E
- 41%
- 16%
- 43%
Company F
- 50%
- 50%
Company H
- 30%
- 5%
- 65%
Company I
- 100%

ELECTROMECHANICAL
MICROPROCESSOR
ELECTRONIC
Type Relaying: 200 - 300kV

Company C
- 18%
- 27%
- 55%

Company D
- 20%

Company E
- 25%
- 25%
- 50%
Type Relaying: 50 - 100kV

Company A
- 99%
- 1%

Company B
- 77%
- 21%
- 2%

Company C
- 25%

Company D
- 100%

Company E
- 48%
- 4%

Company H
- 10%
- 90%

Company I
- 50%
- 50%

- ELECTROMECHANICAL
- MICROPROCESSOR
- ELECTRONIC

C37
Calibration Test Interval for Electromechanical Relays

Years

Company

A B C D E F H I

51-100 kV
101-200 kV
201-300 kV
301-400 kV
Calibration Test Interval for Microprocessor Relays
Calibration Test Interval for Electronic Relays

Company

A B C D E F H I

51-100 kV 101-200 kV 201-300 kV 301-400 kV

Years

1 2 3 4 5 6
Functional Test Interval for Electromechanical Relays

Years

Company

A B C D E F H I

51-100 kV 101-200 kV 201-300 kV 301-400 kV
Functional Test Interval for Microprocessor Relays
Functional Test Interval for Electronic Relays

Company

Years

51-100 kV
101-200 kV
201-300 kV
301-400 kV
Company A
345 kv Performance
Total Misoperations

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>15.8%</td>
</tr>
<tr>
<td>2001</td>
<td>16.7%</td>
</tr>
<tr>
<td>2002</td>
<td>11.8%</td>
</tr>
<tr>
<td>2003</td>
<td>17.4%</td>
</tr>
</tbody>
</table>

- **Failure to Trip**
- **Slow Trip**
- **Unnecessary Trip During Fault**
- **Unnecessary Trip Other Than Fault**
- **Failure to Reclose**
Company B
345 kv Performance
Total Misoperations

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>7.8%</td>
</tr>
<tr>
<td>2001</td>
<td>7.5%</td>
</tr>
<tr>
<td>2002</td>
<td>8.1%</td>
</tr>
<tr>
<td>2003</td>
<td>14.5%</td>
</tr>
</tbody>
</table>

- **Failure to Trip**: 0% - 8.0%
- **Slow Trip**: 0% - 8.0%
- **Unnecessary Trip During Fault**: 0% - 8.0%
- **Unnecessary Trip Other Than Fault**: 0% - 8.0%
- **Failure to Reclose**: 0% - 14.5%
Company C
138 kv Performance
Total Misoperations

<table>
<thead>
<tr>
<th>Year</th>
<th>Failure to Trip</th>
<th>Slow Trip</th>
<th>Unnecessary Trip During Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>29.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>35.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>31.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>22.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Company A
69 kv Performance
Total Misoperations

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>13.2%</td>
</tr>
<tr>
<td>2001</td>
<td>7.5%</td>
</tr>
<tr>
<td>2002</td>
<td>8.2%</td>
</tr>
<tr>
<td>2003</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

Legend:
- Blue: Failure to Trip
- Orange: Slow Trip
- Red: Unnecessary Trip During Fault
- Gray: Unnecessary Trip Other Than Fault
- Purple: Failure to Reclose
Company B
69 kv Performance
Total Misoperations

<table>
<thead>
<tr>
<th>Year</th>
<th>Failure to Trip</th>
<th>Slow Trip</th>
<th>Unnecessary Trip During Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C52
Company C
69 kv Performance
Total Misoperations

<table>
<thead>
<tr>
<th>Year</th>
<th>Failure to Trip</th>
<th>Slow Trip</th>
<th>Unnecessary Trip During Fault</th>
<th>Unnecessary Trip Other Than Fault</th>
<th>Failure to Reclose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>10.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 1
1.0 Introduction
To varying degrees, different transmission system operators have measured the performance of their protective relay systems; however, general comparisons cannot be made between different transmission systems because no consistent performance measuring criterion has been utilized. This paper presents a simplistic approach to analyzing the performance of a protective relay system that is associated with any transmission system. This simplistic approach asks “When a system event occurs, did everything work correctly, or did something in the protective system misoperate?” If everything operates as designed, it is counted as one correct operation (even though multiple breakers might have operated). If one or more terminals of the protective relay system misoperate, they are categorized as to the type of misoperation. The total number of misoperations can be compared to the total number of events to determine the relative success of the protective relay system. This simplistic approach is broad enough to allow for comparisons between different transmission systems with different design parameters. However, in using this information in a comparative fashion between different transmission systems, it is necessary to consider the differences in design parameters and in the expected performance of the protective relay system.

2.0 Measuring Methodology
The measuring methodology involves identifying all system misoperations, comparing them to the number of events (i.e. opportunities to misoperate), and calculating a percentage of misoperation.

2.1 Definition of Protective System Misoperation
Fundamental to this relay performance measuring methodology is defining a misoperation and grouping them into logical categories. Table 1 is the foundation for defining a misoperation. The misoperation table is structured such that:

- a) Dependability, security, and system restoration statistics can be recorded and trended separately or summed into a total misoperation category;
- b) Companies can look at only the performance of the relay system, the performance of the circuit breakers, or the performance of the entire protective system;
- c) The criterion can be applied for different voltage levels, or as a composite of several voltage levels.

Additionally, this table structure allows for easy comparison between companies.

It should be noted that this definition is intended to measure the protective system as a whole and not the individual relaying components. For instance, if a fault occurs and is isolated from a backup (or redundant) protective system that operates with no intentional time delay, the fact that the primary system did not operate does not constitute a misoperation.
Table 1 MISOPERATION TABLE

<table>
<thead>
<tr>
<th></th>
<th>Dependability</th>
<th>Security</th>
<th>System Restoration</th>
<th>Total Misoperations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Failure to Trip</td>
<td>Failure</td>
<td>Slow Trip</td>
<td>Unnecessary Trip During Fault</td>
</tr>
<tr>
<td>Relay System (A)</td>
<td>1</td>
<td>---</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Circuit Breaker (B)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>---</td>
</tr>
<tr>
<td>Protective System (A+B)</td>
<td>1+6</td>
<td>7</td>
<td>2+8</td>
<td>3</td>
</tr>
</tbody>
</table>

i - Relay System defined as the protective relays, communication system, voltage/current sensing devices, and dc system up to the terminals in the circuit breaker.

ii - Circuit Breaker is a generic term for any fault interrupting device.

iii - Protective System includes both relay system and circuit breakers (A+B).

The numbers in the table refer to the legend where a definition of the category is given.

LEGEND:

1. **Failure To Trip (Relay System)**
 - Any failure of a relay system to initiate a trip to the appropriate terminal when the fault is within the intended zone of protection of the protective device.

2. **Slow Trip (Relay System)**
 - A correct operation of a relay scheme for a fault in the intended zone of protection where the relay scheme initiates the trip slower than the system design intends.

3. **Unnecessary Trip During a Fault (Relay System)**
 - Any undesired relay-initiated operation of a circuit breaker during a fault when the fault is outside the intended zone of protection.

4. **Unnecessary Trip Other Than Fault (Relay System)**
 - The unintentional operation of a protective relay which causes a circuit breaker to trip when no system fault is present; may be due to environmental conditions, vibration, improper settings, heavy load, stable load swings, defective relays, or SCADA system malfunction. Employee action that directly initiates a trip is not included in this category. See Clause 3.1 Human Performance.

5. **Failure to Reclose (Relay System)**
 - Any failure of a relay system to automatically reclose following an event if that is the system design intent.

6. **Failure to Trip (Circuit Breaker)**
 - The failure of a circuit breaker to trip during a fault even though the relay system initiated the trip command.

7. **Failure to Interrupt (Circuit Breaker)**
 - The failure of a circuit breaker to successfully interrupt a fault even though the circuit breaker mechanically attempts to open.

8. **Slow Trip (Circuit Breaker)**
 - A circuit breaker which operates slower than the design time during a fault following the trip initiation from the relay system.

9. **Unnecessary Trip Other Than Fault (Circuit Breaker)**
 - The tripping of a circuit breaker due to breaker problems such as low gas, low air pressure, etc.

10. **Failure to Reclose (Circuit Breaker)**
 - Any failure of a circuit breaker to successfully reclose following the reclose initiate signal from the relay system.
2.2 Definition of Event

An event is defined as “the operation of all necessary breakers to isolate an electrical fault including all subsequent automatic or manual recloses (and trips if appropriate) or any set of conditions resulting in an unintentional operation of the protective system”. For example, if three breakers trip and successfully reclose following a temporary electrical fault, this counts as one event. If the same three breakers trip multiple times for a planned reclose-trip sequence during a permanent fault, this counts as one event.

2.3 Percent Misoperation

For any selected time period, percent misoperation of a relay scheme for a system is defined in Equation 1.

\[
\text{% Misoperation} = \frac{\text{All Misoperations}}{\text{Total # of Events} + K} \times 100 \quad (1)
\]

Where:

“All Misoperations” is the sum of the misoperations (as defined in Table 1) that have occurred over a time period.

“Total # of Events” is the sum of events (as defined in Clause 2.2) that have occurred over the same time period.

“K” is equal to the number of misoperations for any event minus one.

“K” is an add-on term to account for those situations where more than one misoperation occurs during an event. “K” is a cumulative number that will increase as multiple misoperations occur during events within the period under review. For instance, during an event, if two misoperations occur, the value of K would be increased by 1. If three misoperations occurred during an event, the value of K would be increased by 2. Therefore, if during the time period under study, there were no events where more than 1 misoperation occurred, K would equal zero. However, if during this period, three misoperations occurred during one event, K would equal 2.

Using this equation, percent misoperation can be determined for any voltage class, or for a combination of voltage classes. Furthermore, the misoperation of the protective system can be monitored with or without the circuit breakers.

3.0 Application of Measuring Criterion

When this measuring criterion is first applied, several questions will probably arise. This section should address many of them.

3.1 Human Performance

It is the intent of the measuring criterion to measure the performance of the relay system as it interrelates with the electrical system, not as it interrelates to personnel involved with the relay system. With this in mind, if an individual directly initiates an operation, it is not counted as a misoperation (i.e., unintentional operation during tests). On the other hand, if a technician leaves trip test switches or cut-off switches in an inappropriate position and a system fault or condition causes a misoperation, this would be counted as a relay system misoperation.

3.2 Abnormal Electrical System Conditions

In order to keep the measuring criterion simple, it is desirable to virtually eliminate exceptions to what constitutes a misoperation. For that reason, if a system configuration is abnormal and the relay system misoperates, or if simultaneous faults occur on the system and the relay system misoperates, these conditions would count as a misoperation of the relay system.

3.3 Application at Multiple Voltage Levels

In many cases, the application of this measuring criterion will be segregated by various system voltage levels. This is often necessary to effectively measure the performance of the high speed communication-assisted line relay systems used at the higher voltages from the...
more basic relay systems often used at lower voltages. When this is done, a fault that occurs at one voltage level on a system may cause a misoperation of the relay system associated with a different voltage level. In this case, the misoperation should be classified as a misoperation of the voltage level where the misoperation occurs. This may or may not be the voltage level where the fault (event) occurred. It is recognized that this could lead to a small statistical error in looking at the percent correct operation of a particular voltage class; however, it is generally insignificant and it will correct itself as the data is rolled up into groups of voltage classes.

3.4 Multiple Misoperations During an Event

Occasionally, during a system event, more than one terminal or one relay system on a system misoperates. When this occurs, each terminal that misoperates should be counted as a misoperation. For instance, if a fault occurs and is properly cleared from the system, but a remote terminal to the fault line also trips in error, and the system fails to properly reclose, this would be counted as two misoperations. One misoperation would be classified as an “Unnecessary Trip During Fault” and one would be classified as a “Failure to Reclose”. This would be a situation where the K factor shown in equation 1 would be increased by one.

However, if a fault occurs, the system recloses multiple times into the fault, and a remote terminal to the line section trips during the various reclosures, this would only count as one misoperation. This is because the original fault and all subsequent closures into the fault are counted as the same event.

4.0 How to use the Information

This information can be used in a variety of ways, either for a transmission system to compare itself to itself over various time periods, or to compare itself to other transmission systems. When making comparisons between different systems, care must be taken to consider differences in the design expectations, design type, and maintenance practices. For instance, some systems do not require communication-assisted tripping schemes for quick clearing of transmission line faults. The protective relay performance of these particular relay systems is typically better than that of the high-speed communication-assisted relay systems.

4.1 Use of Misoperation Table

The misoperation table can be used as a stand-alone reporting format. This allows for logical grouping of various failures of the protective relay system and the associated circuit breakers. Used in this fashion, a transmission system operator can track trends in the system performance over time or compare among different transmission systems.

4.2 Calculating Percent Misoperation

By calculating a percent misoperation, the measuring criterion normalizes itself to the opportunity for misoperation. This is important for internal comparisons over time where the number of faults may be substantially different from one period to the next. It is also important for any comparisons among companies because by normalizing to the number of events, it allows for comparison of transmission systems, regardless of size of the system or number of fault events on the system.

5.0 Example Use of Measuring Criterion

For purpose of example, this measuring criterion is applied to a utility’s 345 kV and 138 kV protective system performance for the year 1997. For that particular year, there were 43 relay system misoperations, 5 circuit breaker misoperations, and 553 events.

5.1 Use of the Misoperation Table

Table 2 is a summary of the results of the utility’s annual protective system performance. In that particular year, there were 7 slow trips due to the relay system and one due to problems with a circuit breaker operating mechanism. For this utility, a slow trip is any transmission system fault where the total clearing time for the fault is in
excess of 8 cycles. These slow trips ranged from 9.5 cycles to 38 cycles.

There were a total of 31 occurrences of unnecessary trips during a fault. Most were the result of problems with powerline carrier systems and with the relaying associated with the communication-assisted relay schemes. There were 2 cases of circuit breakers tripping due to problems with the circuit breaker. In both of these cases, there were problems with gas compressors causing the breaker to be automatically removed from service.

There were 7 cases where automatic reclosing did not occur as designed. Five cases were the result of problems in the relay scheme. Two cases were due to problems with the circuit breakers.

5.2 Use of Percent Misoperation Formula

There were 553 events during the year. The majority of these events were due to transmission line faults. Following most of these faults, the system was successfully restored through automatic reclosing. About 5% of these events resulted in facilities automatically reclosing into the faults and eventually “locking out” the faulted circuit.

Out of the 553 events, there were three events where relay systems misoperated on more than one terminal. On one event, three separate terminals tripped unnecessarily. This adds 2 to the K factor in equation 2. On another event, both a slow trip and a failure to reclose occurred. This adds 1 to the K factor. On a third event, both a slow trip and an extra trip occurred. This also adds 1 to the K factor.

\[
\% \text{Misoperation} = \frac{43}{553 + (2 + 1 + 1)} \times 100 = 7.7\% \tag{2}
\]

Solving for equation 2, the total percent misoperation for this example, is 7.7%.

The bottom three rows of Table 2 indicate the percent misoperation by the various categories. These percentages could also be applied for each category in the table and segregated by voltage class if the user desired.
<table>
<thead>
<tr>
<th></th>
<th>Dependability</th>
<th>Security</th>
<th>System Restoration</th>
<th>Total Misoperations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Failure to Trip</td>
<td>Failure to Interrupt</td>
<td>Slow Trip</td>
<td>Unnecessary Trip During Fault</td>
</tr>
<tr>
<td>Relay System</td>
<td>0</td>
<td>---</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>Total Protective System</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>31</td>
</tr>
<tr>
<td>Percent Incorrect Operation Relay System</td>
<td>0%</td>
<td>0%</td>
<td>1.3%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Percent Incorrect Operation Circuit Breaker</td>
<td>0%</td>
<td>0%</td>
<td>0.2%</td>
<td>0%</td>
</tr>
<tr>
<td>Percent Incorrect Operation Protective System</td>
<td>0%</td>
<td>0%</td>
<td>1.4%</td>
<td>5.6%</td>
</tr>
</tbody>
</table>