Effect of Distribution Automation on Protective Relaying

Power System Relay Committee
September 11, 2014

Presented by Fred Friend
Working Group D11

<table>
<thead>
<tr>
<th>Chair – Fred Friend</th>
<th>Vice Chair – Gerald Johnson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian Mugalian</td>
<td>John Tengdin</td>
</tr>
<tr>
<td>Calin Micu</td>
<td>Juan Gers</td>
</tr>
<tr>
<td>Charles Sufana</td>
<td>Kevin Donahoe</td>
</tr>
<tr>
<td>Cheong Siew</td>
<td>Matt Black</td>
</tr>
<tr>
<td>Claire Patti</td>
<td>Mike Meisinger</td>
</tr>
<tr>
<td>Daniel Goodrich</td>
<td>Pat Heavey</td>
</tr>
<tr>
<td>Don Lukach</td>
<td>Patrick Carroll</td>
</tr>
<tr>
<td>Don Parker</td>
<td>Raluca Lascu</td>
</tr>
<tr>
<td>Farajollah Soudi</td>
<td>S.S. Mani Venkata</td>
</tr>
<tr>
<td>Jack Jester</td>
<td>Steven Hodder</td>
</tr>
<tr>
<td>Jakov Vico</td>
<td>Victor Ortiz</td>
</tr>
<tr>
<td>Jay Sperl</td>
<td>Wayne Hartmann</td>
</tr>
</tbody>
</table>
Effect of Distribution Automation on Protective Relaying

- Introduction
- History of Distribution Automation
- Effects on Application and Settings
- Impact of System Maintenance
- Bibliography and Annexes
Effect of Distribution Automation on Protective Relaying
Introduction

- Origins of the Paper
 - IEEE Power System Relaying Committee
 - Working Group D11 (D-Line Protection Subcommittee)
 - Purpose: Explore the effect of distribution automation on protective relaying applied on primary, non-network, distribution systems
 - DA defined as sectionalization and reconfiguration of distribution circuits using:
 - Auto or remote controlled transfer switches
 - Reclosers, fault interrupters, sectionalizers, cap controls, etc
History of Distribution Automation

- Substation Based Automation
 - Supervisory Control
 - Used in Subs w/ coms to Manned Control Center
 - Typically leased telephone circuits
 - Remotely monitored & controlled Feeder Breakers
 - Included status of each breaker
 - Monitored one phase current/bkr & voltage
 - Monitoring and control of Cap banks & some LTCs
 - Expensive for distribution sub applications
History of Distribution Automation

- Substation Based Automation
 - Project PROBE
 - 1974 *Power Resource Optimization By Electronics*
 - Varian V-72 mini computer 1974-78 La Grange Park Sub
 - Probe Phase 2
 - Varian V-77 mini computer
 - 1978-80 First application of integrated volt/var profile
 - Used to flatten feeders voltage profile
 - Later, EPRI Project RP 1472-1
 - Prototype Microprocessor Relays, DPM (Distribution Protection Module) had six functions 50, 51, 79, 50BF, 25, 81
History of Distribution Automation

- Line Distribution Automation
 - Remote Monitoring and Control
 - Evolved to include motor operated switches, line reclosers, line caps & regulators and defined a need for monitoring I & V at newly monitored devices
 - New Current and Voltage Sensors Developed
 - Look of line post insulator
 - Less bulky and costly
 - With sensing on feeders, more data was available for locally operated logic blocks
 - On-board Logic
 - Microprocessor-based Relays
History of Distribution Automation

- Microprocessor-based Relays
 - Developed pole mounted controls for reclosers
 - Perform protection & communications simultaneously
 - Feasible to perform fault isolation and feeder reconfigure without control center intervention
 - Allows switching portion of one feeder to another
 - Settings Groups to Enable Reconfiguration
 - Action Based on Dynamic Current Ratings
 - Single-Phase and Three-Phase Recloser Operation
 - Coordination issues with legacy relays
Today's Distribution Automation Applications

- Remote Monitoring
 - SCADA Protocols
 - Fault detection
 - Circuit & Load Measurements
- Remote Monitoring with Control
- With Circuit Reconfiguration
- Reporting
- Evaluation
- DA Schemes Vary in Degree of Complexity
Hierarchy of Intelligence

- Local
- Distributed
- Central
Hierarchy of Intelligence

- Local
 - Minimal Communication Between Devices
 - Functionality Contained Within the Device
 - Occurs Based on External Conditions (V-I-Position)
Local Intelligence

- Line A: 1
- Line B: 2
- Line C: Z
- Load
- T (N.O.)
- X
- Y

Diagram:

- Line A connected to Line B
- Line C connected to Line A
- T connected to X
- Y connected to Z
- Z connected to N.O.
Hierarchy of Intelligence

- Distributed Intelligence
 - Decentralized Intelligence
 - Communication & Software Between Devices
 - Provides Automated Control Within Defined Area
 - Shared Software & Communications distribute data
 - Utilizes Data Inputs From Communicating Devices
Intelligent Communication

Line A

1

X

N.O.

Load

T

N.O.

Y

Load

Line B

2

Line C

Z

N.O.

IEEE
Hierarchy of Intelligence

- **Centralized Intelligence**
 - Concepts are applied across larger control areas
 - Scheme determines optimal switching sequences
 - Numerous possibilities have to be analyzed
 - In advance & logic designed into central controller
 - Intelligence Resides at a Remote Location
 - Control or Data Center
 - Reliable, robust, secure communication system required
Central Intelligence

Volt-Var Optimization

Dynamic Equipment Rating

Optimal Network Configuration

Fault Location Isolation and Service Restoration
Effects on Application and Settings

- Circuit Reconfiguration
- Protection Considerations
Circuit Reconfiguration

- **Proactive**
 - Prepare circuits for permanent or temporary change
 - To improve the operating condition of the system
 - Driving Factors
 - Improve voltage profile
 - Energy loss reduction
 - Maintenance or repair
 - Temporary Overload
 - Relaying has been assessed and changes made
Circuit Reconfiguration

- Automatic (Reactive)
 - Reaction to system condition
 - Requires automatic control & intelligence to analyze fault condition
 - Provide alternate to restore max number of customers
 - May require new preprogrammed protection settings, new setting group or reverse power protection
Circuit Reconfiguration Protection Considerations

- FLISR must coordinate with auto reclosing
- Reconfiguration may need final reclosing shot
- Reconfiguration may need revised protection
- DA must distinguish between fault and non-fault or abnormal operations
Load Sectionalizing Considerations

* Preferred Location for Tie Switch
Load Sectionalizing Considerations

Substation A

- Normal closed
- Normal open
- Loads

IEEE Power & Energy Society
Possible Issues with Serving Load

- Close-Transition Switching
 - Voltage differences
 - Short circuit levels

- Changes in Load without Relay Changes
 - Overloaded devices

- Reverse Power Flow
 - Non directional relays

- Network Configuration
Fault Location, Isolation, and Service Restoration

- **FLISR Process**
 - Fault is detected, current source removed
 - Fault is located and switches isolate it
 - Upstream restoration
 - Downstream restoration
 - Faulted section repaired and system returned to normal
FLISR Requirements

- Transformer and line currents remain within specified limits
- Voltage drop stays inside an established margin
- A radial system is maintained
- Reduce number of equipment operations
- System balance is maintained
- Protection coordination is maintained
- System protection maintained for all reconfigurations
- Harmonic content and power factor are within established limits
FLISR

INITIAL CONFIGURATION

- Breaker
- Closed switch
- Open switch
- Bx Feeder
- Zx Feeder section
FLISR

FINAL CONFIGURATION AFTER FAULT IN Z2 HAS BEEN CLEARED AND ISOLATED

- Breaker
- Closed switch
- Open switch
- Bx Feeder
- Zx Feeder section
Protection Considerations

- Multiple Settings Groups – D and T
- Adaptive Relay Applications and Considerations
- Zone of Protection
 - Instantaneous Overcurrent
 - Time Delayed Overcurrent
 - Cold Load Pickup
 - Arc Flash Requirements
- Fuse Saving/Sacrificing
- Distance to Fault Calculation
Protection Considerations - DR

- Radial Design at the Source
- Radial Design on the Line
- Sync-Check
- Islanding Concerns on Reconfiguration
- Pilot Schemes
- Apparent Impedance
- Zero Sequence Influence
System Maintenance

- Documentation
- Lock Out Tag Out Procedures
- Physical Security
- Remote Location Maintenance
- Master Station Maintenance
Remote Location Maintenance

- Environmental Damage
- Battery System
- Error Logs
- Communication System
- Operate Bypass
Master Station Maintenance

- Battery System
- Nuisance Event Process
- Communication System
- Database Maintenance
Bibliography

- 24 References
- 44 Different Authors
- 36 Years
Annex A – Changes of Power Flow Due to Different Topology Scenarios
Annex B – One Company’s History with Distribution Automation

- Duquesne Light Company
- 14 aspects to protecting the distribution circuit
- 5 point philosophy for the distribution system
- Operating experience
- Results
- Conclusions