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Introduction

The spread sheet “CT Saturation Calculator” is intended to provide quick indication not only of
whether or not a CT will saturate in a particular application, but also an accurate indication of
the actual waveshape of the secondary current so that the degree of saturation as a function of
time is apparent. Furthermore, the data is available to the user to use as input to a digital relay
model, if such is available. The user can convert the data into a COMTRADE file, for example.

There are many technical papers on the subject of modeling the behavior of iron-cored current
transformers used for protective relaying purposes. One of the difficulties in using an elaborate
model (in any field of engineering) is in getting the parameters in a particular case in order to
implement that model easily, efficiently and accurately. For example, the excitation current in
the region below the knee-point is a complex combination of magnetizing, hysteresis and eddy-
current components, the parameters of which are usually not known in a particular case.

It turns out (can be shown) that, if the excitation current waveform reaches into the saturated
region, the part of the waveform in the below-knee-point region has negligible effect on the

overall solution. This simplifies the solution greatly, with little effect on accuracy.

If errors under low current, low burden conditions are of interest, a more elaborate model must
be used.

Testing of the Model

The proof of the pudding is in the eating. Because this model is new and quite different from those
in the literature, testing against real high-current laboratory results was important. To this end,
two laboratory examples published in reference (1) were compared against results from this
program. The agreement was very close. [Note the comment at the end of reference (1).]



In addition, the program has had widespread circulation, and to date there are two utility-user
reports of agreement with previous results and no reports of disagreement.

Circuit model

The circuit model is shown in Fig. 1.
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Fig. 1 Circuit model.

The symbols used in Fig.1 as well as those used in what follows and on the spread sheet are
listed in the next section.

Symbols

All units are SI: volts, amps, weber-turns, ohms, henries, radians, seconds.

i1 instantaneous primary current A instantaneous flux-linkages
Ir rms symmetrical primary fault current Arem Temanence (per unit of Vs)
Off dc-offset magnitude (per unit) S inverse of slope of V. vs . curve
. system time constant A  parameter of ic vs A curve
iz instantaneous secondary current RP factor defined as Lo /I

is  instantaneous ideal secondary current ® radian frequency = 2160

o instantaneous excitation current T  one period: 2n radians

I rms excitation current Rev winding resistance

Ir  peak excitation current R»  burden resistance

ve instantaneous excitation voltage Rt Rw+Re

Ve rms excitation voltage Lo burden inductance

Vs rms ‘saturation voltage’



The Excitation Curve

The excitation characteristic of the CT is invariably a plot of secondary rms voltage versus
secondary rms current, on log-log axes, as shown in Fig. 2.

For this model, only two parameters need to be extracted from the curve: S and Vs. See Fig. 3.
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Fig. 2 Factory-supplied information: the excitation curve.
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Fig. 3 Method of determining the parameters Vs and S
for the saturation curve used in the model.



The reason for choosing the saturation voltage, Vs, at the point where the excitation current is ten
amps, is that this is the definition used in the standard. For example, a C400 CT is one in
which the excitation voltage is 400 volts rms (or more) for an error current of 10 amps. Caution:
in setting up a particular case, use the actual value for V; rather than the rating value because a
CT rated C400 may actually supply, for example, 423 volts at 10 amps.

In order to check the validity of ignoring the high-slope low-end of the saturation curve, two
models were compared: one the model of Fig. 3, and another the model of Fig. 4. As long as the
condition was at or near saturation, there was no visible difference in the saturation curves,
because the below-the-knee-point currents are very small by comparison with even mild
saturation currents. The decided advantage of eliminating this region from the model is that
the hysteresis and eddy current parameters are very difficult to determine. They are not
included in standard data for CT’s.
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Fig. 4 Temporary test model.

Conversion to Instantaneous Quantities

The straight line curve with slope 1/S shown in Fig. 3 is not linear. It is a curve defined
mathematically as

log/V, :élogle +log/V, (1)
where Viis the value of V. for =1, that is for log [=0. Removing the logs:

V=15, e



Remember that these are all rms quantities, presumably measured with “true-rms” voltmeters
and ammeters. [A study has shown that if rms-calibrated meters were used, with either peak-
sensitive or rectified-average-sensitive elements, the effect on accuracy is not substantial.]

In order to solve the differential equations implied by the circuit of Fig. 1, one needs the
instantaneous A versus i. curve. It is postulated here that a curve defined as

i, =A4-2° 3)

is suitable as long as the exponent S is an odd integer. In order to allow S to be any positive
number, and keep the function odd, we can use the following more general expression:

i, = A-sgn(A)-| A (4)

where sgn(4) is the sign of 4. See Fig. 5 showing a sample plot of this function.
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Fig. 5. Postulated instantaneous values saturation curve.
The next step is to determine the constant A in terms of known parameters.

First, the flux-linkages A are related to the instantaneous excitation voltage v. by Faraday’s
law (The error due to ignoring R« here is very small - less than the measurement errors
involved in determining the V. vs L. curve):

_d
Cdt

v

()

The excitation curve is found using sinusoidal voltage, which implies that the flux-linkages are
also sinusoidal:



v, = \/EVe cos(at), and (6)
A= .[vedt = J-\/EVQ cos(at)dt = x/EVe isin(coz‘) . (7)
@

The excitation current is non-sinusoidal, since it is an St order function of A :

S S
V27, V27,
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i,=AX =4 sin® (1) ©)
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The rms value of this current is, by definition:
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Next, we define the ratio of rms-value-to-peak-value of the excitation current as RP :

Rp __MS
peak

For a sinusoid RF=0.7071, and for 7. RP is given by

1 27

— [I%k sin?’ (1) dt
27 0 2z . 28
RP = = [ sin“” (et)dt (0
-[pk' T 0

The above definite integral, (and hence RP) can best be evaluated using numerical integration,
and in fact this is done directly on the spread sheet - using trapezoidal integration - for the
particular S entered by the user.



Fig. 6 illustrates the difference between rms/peak for a sinusoid and rms/peak for the assumed
excitation current waveform: the form factor RP gets smaller as the value of S increases.
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Fig.6 Comparison of the rms/peak relationship for two waveshapes.
Left: excitation voltage or flux-linkages. Right: excitation current.

Substituting this result into equation (8), yields

S
I, = A{&VG} RP (11)

(0]

But we know that when [=10, V=Vs. Substituting,

S
10:A|:\/§Vs} RP.

(0]

Solving for A:

100° 1

= RP ) (12)
(Var, )
Equation (4) becomes, therefore, the fundamental i. vs A relationship:
S
. 10w 1 S
i, =sgn(A) | 4] as illustrated in Fig. 5.  (13)

(Var, ) kP



Solution of Circuit Model

The circuit of Fig. 1 is solved simply by writing Kirchhoff’s Voltage Law around the right-hand
loop:

ve—(is—ie)-R,—Lb%[is—ie]:O (14)

The ‘forcing function” and its derivative are:

. \/E'[
i, = b P [Oﬁ‘ ce”!1 _cos(ewt —cos™ Oﬁ‘)] (15)
N N
di \/E'Ip -Off it . -1 }
=P _ZH T g sin(wt —cos T O 16
dt N [Taul ( #) 1)
Note that
di, _di, di (17)
dt dA dt
and
Do _ 45 2P (18)
dA

Finally, with substitutions and manipulation, equation (14) is re-written as:
di

92 ar, A5 A1 =R, + Ri +L,
di T

(18)

dependent variable forcing function

This first-order nonlinear differential equation is solved for A) using standard numerical
analysis techniques, such as trapezoidal integration, Runge-Kutta integration, or simple step
increments. The latter is used in the spread sheet program, for simplicity, since the accuracy is
sufficient for this application.

Then the excitation(error) current i. is given by equation (3), and the actual secondary current -
the goal of this exercise - by

iZ = l‘s _ie (19)



Remanence

With the single-valued saturation curve assumed here, conventional remanence is not possible
because non-zero A cannot occur for zero i.. However, remanence can be approximated very
closely by simply assuming that the initial excitation current is non-zero. A quite small initial
excitation current will accomplish this, even for a large remanence. For convenience, Awen is
expressed in per unit of Vs since the “knee-point” itself is not defined in this model. See Fig. 7.
In order to specify Arm accurately, x must be specified no greater than Viwe in Fig. 7. In other
words, if Vine is 80% of Vs then the value of Awn cannot exceed 0.8 per unit.
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Fig. 7 Definition of per unit remanence used in this model.
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