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Introduction 
 
The spread sheet “CT Saturation Calculator” is intended to provide quick indication not only of 
whether or not a CT will saturate in a particular application, but also an accurate indication of 
the actual waveshape of the secondary current so that the degree of saturation as a function of 
time is apparent. Furthermore, the data is available to the user to use as input to a digital relay 
model, if such is available. The user can convert the data into a COMTRADE file, for example.   
 
There are many technical papers on the subject of modeling the behavior of iron-cored current 
transformers used for protective relaying purposes. One of the difficulties in using an elaborate 
model (in any field of engineering) is in getting the parameters in a particular case in order to 
implement that model easily, efficiently and accurately. For example, the excitation current in 
the region below the knee-point is a complex combination of magnetizing, hysteresis and eddy-
current components, the parameters of which are usually not known in a particular case.  
 
It turns out (can be shown) that, if the excitation current waveform reaches into the saturated 
region, the part of the waveform in the below-knee-point region has negligible effect on the 
overall solution. This simplifies the solution greatly, with little effect on accuracy.  
 
If errors under low current, low burden conditions are of interest, a more elaborate model must 
be used. 
 
Testing of the Model 
 
The proof of the pudding is in the eating. Because this model is new and quite different from those 
in the literature, testing against real high-current laboratory results was important. To this end, 
two laboratory examples published in reference (1) were compared against results from this 
program. The agreement was very close. [Note the comment at the end of reference (1).] 
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In addition, the program has had widespread circulation, and to date there are two utility-user 
reports of agreement with previous results and no reports of disagreement. 
 
Circuit model 
 
The circuit model is shown in Fig. 1. 
 

 
 
 
 
 
 
 
 

Fig. 1  Circuit model. 
 
The symbols used in Fig.1 as well as those used in what follows and on the spread sheet are 
listed in the next section. 
 
 
Symbols 
 
All units are SI: volts, amps, weber-turns, ohms, henries, radians, seconds. 
 
i1 instantaneous primary current 
IP rms symmetrical primary fault current 
Off dc-offset magnitude (per unit) 
1 system time constant
i2 instantaneous secondary current 
is instantaneous ideal secondary current 
ie instantaneous excitation current 
Ie rms excitation current 
Ipk peak excitation current 
ve instantaneous excitation voltage 
Ve rms excitation voltage 
Vs rms ‘saturation voltage’ 

 instantaneous flux-linkages 
rem remanence (per unit of Vs) 
S inverse of slope of Ve vs Ie curve 
A parameter of ie vs  curve 
RP factor defined as  Ie /Ipk 

 radian frequency = 260 
T one period: 2 radians 
Rw winding resistance 
Rb burden resistance 
Rt Rw + Rb 
Lb burden inductance 
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The Excitation Curve 
 
The excitation characteristic of the CT is invariably a plot of secondary rms voltage versus 
secondary rms current, on log-log axes, as shown in Fig. 2. 
 
 
For this model, only two parameters need to be extracted from the curve: S and VS .  See Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Factory-supplied information: the excitation curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3  Method of determining the parameters Vs and S 
for the saturation curve used in the model. 
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The reason for choosing the saturation voltage, Vs ,  at the point where the excitation current is ten 
amps, is that this is the definition used in the standard.  For example, a  C400  CT is one in 
which the excitation voltage is 400 volts rms (or more) for an error current of 10 amps. Caution: 
in setting up a particular case, use the actual value for Vs rather than the rating value because a 
CT rated C400 may actually supply, for example, 423 volts at 10 amps. 
 
In order to check the validity of ignoring the high-slope low-end of the saturation curve, two 
models were compared: one the model of Fig. 3, and another the model of Fig. 4. As long as the 
condition was at or near saturation, there was no visible difference in the saturation curves, 
because the below-the-knee-point currents are very small by comparison with even mild 
saturation currents.  The decided advantage of eliminating this region from the model is that 
the hysteresis and eddy current parameters are very difficult to determine. They are not 
included in standard data for CT’s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Temporary test model. 
 
 
Conversion to Instantaneous Quantities 
 
The straight line curve with slope  1/S  shown in Fig. 3 is not linear.  It is a curve defined 
mathematically as 
 

 iee VI
S

V loglog
1

log    (1) 

 
where Vi is the value of Ve  for  Ie=1, that is for log Ie=0.  Removing the logs: 
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eie IVV
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Remember that these are all rms quantities, presumably measured with “true-rms” voltmeters 
and ammeters. [A study has shown that if rms-calibrated meters were used, with either peak-
sensitive or rectified-average-sensitive elements, the effect on accuracy is not substantial.] 
 
In order to solve the differential equations implied by the circuit of Fig. 1, one needs the 
instantaneous    versus  ie  curve. It is postulated here that a curve defined as 
 
 S

e Ai   (3) 
 
is suitable as long as the exponent  S  is an odd integer. In order to allow  S  to be any positive 
number, and keep the function odd, we can use the following more general expression: 
 
 S

e Ai ||)sgn(    (4) 
 
where  sgn() is the sign of  . See Fig. 5 showing a sample plot of this function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Postulated instantaneous values saturation curve. 
 
The next step is to determine the constant  A  in terms of known parameters. 
 
First, the flux-linkages    are related to the instantaneous excitation voltage  ve  by Faraday’s 
law (The error due to ignoring  Rw  here is very small - less than the measurement errors 
involved in determining the  Ve  vs  Ie  curve): 
 

 
dt

d
ve


  (5) 

 
The excitation curve is found using sinusoidal voltage, which implies that the flux-linkages are 
also sinusoidal:  
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 )cos(2 tVv ee  , and (6) 
 

    )sin(
1

2)cos(2 tVdttVdtv eee 


 . (7) 

 
The excitation current is non-sinusoidal, since it is an Sth order function of   : 
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The rms value of this current is, by definition: 
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Next, we define the ratio of rms-value-to-peak-value of the excitation current as RP : 
 

 
peak

rms
RP   . 

 
For a sinusoid RF=0.7071, and for ie  RP is given by 
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 (10) 

 
The above definite integral, (and hence RP) can best be evaluated using numerical integration, 
and in fact this is done directly on the spread sheet - using trapezoidal integration - for the 
particular  S  entered by the user. 
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Fig. 6 illustrates the difference between rms/peak for a sinusoid and rms/peak for the assumed 
excitation current waveform: the form factor  RP  gets smaller as the value of  S  increases. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6  Comparison of the rms/peak relationship for two waveshapes. 
Left: excitation voltage or flux-linkages.  Right: excitation current. 

 
 
Substituting this result into equation (8), yields 
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But we know that when  Ie=10 , Ve=Vs.  Substituting, 
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A10

S
s















. 

 
Solving for A: 
 

 

  RPV
A
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Equation (4) becomes, therefore, the fundamental  ie vs  relationship:
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Solution of Circuit Model 
 
The circuit of Fig. 1 is solved simply by writing Kirchhoff’s Voltage Law around the right-hand 
loop: 
 

   0)(  esbtese ii
dt

d
LRiiv  (14) 

 
The ‘forcing function’ and its derivative are: 
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Note that 
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and 
 

 1||  Se SA
d

di



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Finally, with substitutions and manipulation, equation (14) is re-written as: 

  
dt

di
LiRiRSAL

dt

d s
bstet

S
b  1||1 

 (18) 

 
 dependent variable forcing function 
 
This first-order nonlinear differential equation is solved for  t  using standard numerical 
analysis techniques, such as trapezoidal integration, Runge-Kutta integration, or simple step 
increments. The latter is used in the spread sheet program, for simplicity, since the accuracy is 
sufficient for this application. 
 
Then the excitation(error) current  ie  is given by equation (3), and the actual secondary current - 
the goal of this exercise - by 
 
 es iii 2  (19) 
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Remanence 
 
With the single-valued saturation curve assumed here, conventional remanence is not possible 
because non-zero  cannot occur for zero ie .  However, remanence can be approximated very 
closely by simply assuming that the initial excitation current is non-zero. A quite small initial 
excitation current will accomplish this, even for a large remanence. For convenience,  rem  is 
expressed in per unit of  Vs  since the “knee-point” itself is not defined in this model.  See Fig. 7. 
In order to specify  rem accurately,  x   must be specified no greater than  Vknee  in Fig. 7. In other 
words, if  Vknee  is 80% of  VS  then the value of  rem  cannot exceed 0.8 per unit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Definition of per unit remanence used in this model. 
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